vasp.6.2.1 16May21 (build Apr 11 2022 11:03:26) complex MD_VERSION_INFO: Compiled 2022-04-11T18:25:55-UTC in devlin.sd.materialsdesign. com:/home/medea2/data/build/vasp6.2.1/16685/x86_64/src/src/build/gpu from svn 1 6685 This VASP executable licensed from Materials Design, Inc. executed on Lin64 date 2024.09.23 12:14:27 running on 3 total cores distrk: each k-point on 3 cores, 1 groups distr: one band on NCORE= 1 cores, 3 groups -------------------------------------------------------------------------------------------------------- INCAR: SYSTEM = No title PREC = Normal ENCUT = 400.000 IBRION = -1 NSW = 0 ISIF = 2 NELMIN = 2 EDIFF = 1.0e-05 EDIFFG = -0.02 VOSKOWN = 1 NBLOCK = 1 NWRITE = 1 NELM = 200 ALGO = Normal (blocked Davidson) ISPIN = 1 INIWAV = 1 ISTART = 0 ICHARG = 2 LWAVE = .FALSE. LCHARG = .FALSE. ADDGRID = .FALSE. ISMEAR = 1 SIGMA = 0.2 LREAL = Auto LSCALAPACK = .FALSE. RWIGS = 1.11 0.75 0.99 0.32 NPAR = 3 POTCAR: PAW_PBE Si 05Jan2001 POTCAR: PAW_PBE N 08Apr2002 POTCAR: PAW_PBE Cl 06Sep2000 POTCAR: PAW_PBE H 15Jun2001 POTCAR: PAW_PBE Si 05Jan2001 local pseudopotential read in partial core-charges read in partial kinetic energy density read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 4 number of lm-projection operators is LMMAX = 8 POTCAR: PAW_PBE N 08Apr2002 local pseudopotential read in partial core-charges read in partial kinetic energy density read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 4 number of lm-projection operators is LMMAX = 8 POTCAR: PAW_PBE Cl 06Sep2000 local pseudopotential read in partial core-charges read in partial kinetic energy density read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 4 number of lm-projection operators is LMMAX = 8 POTCAR: PAW_PBE H 15Jun2001 local pseudopotential read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 3 number of lm-projection operators is LMMAX = 5 ----------------------------------------------------------------------------- | | | ----> ADVICE to this user running VASP <---- | | | | You have a (more or less) 'small supercell' and for smaller cells | | it is recommended to use the reciprocal-space projection scheme! | | The real-space optimization is not efficient for small cells and it | | is also less accurate ... | | Therefore, set LREAL=.FALSE. in the INCAR file. | | | ----------------------------------------------------------------------------- Optimization of the real space projectors (new method) maximal supplied QI-value = 19.84 optimisation between [QCUT,QGAM] = [ 10.12, 20.44] = [ 28.68,116.96] Ry Optimized for a Real-space Cutoff 1.23 Angstroem l n(q) QCUT max X(q) W(low)/X(q) W(high)/X(q) e(spline) 0 7 10.119 159.560 0.56E-04 0.22E-03 0.45E-07 0 7 10.119 115.863 0.56E-04 0.21E-03 0.45E-07 1 7 10.119 88.339 0.34E-03 0.49E-03 0.11E-06 1 7 10.119 48.592 0.33E-03 0.48E-03 0.11E-06 Optimization of the real space projectors (new method) maximal supplied QI-value = 25.13 optimisation between [QCUT,QGAM] = [ 10.05, 20.36] = [ 28.30,116.06] Ry Optimized for a Real-space Cutoff 1.65 Angstroem l n(q) QCUT max X(q) W(low)/X(q) W(high)/X(q) e(spline) 0 10 10.053 79.467 0.76E-04 0.72E-04 0.56E-06 0 10 10.053 66.151 0.76E-04 0.72E-04 0.55E-06 1 10 10.053 8.350 0.25E-03 0.92E-03 0.41E-05 1 10 10.053 5.531 0.27E-03 0.10E-02 0.45E-05 Optimization of the real space projectors (new method) maximal supplied QI-value = 19.84 optimisation between [QCUT,QGAM] = [ 10.12, 20.44] = [ 28.68,116.96] Ry Optimized for a Real-space Cutoff 1.23 Angstroem l n(q) QCUT max X(q) W(low)/X(q) W(high)/X(q) e(spline) 0 7 10.119 168.010 0.54E-04 0.25E-03 0.48E-07 0 7 10.119 164.674 0.53E-04 0.25E-03 0.47E-07 1 7 10.119 69.222 0.45E-03 0.63E-03 0.13E-06 1 7 10.119 56.786 0.45E-03 0.62E-03 0.13E-06 Optimization of the real space projectors (new method) maximal supplied QI-value = 34.20 optimisation between [QCUT,QGAM] = [ 9.92, 20.18] = [ 27.55,114.04] Ry Optimized for a Real-space Cutoff 1.26 Angstroem l n(q) QCUT max X(q) W(low)/X(q) W(high)/X(q) e(spline) 0 8 9.919 19.460 0.50E-03 0.23E-03 0.29E-06 0 8 9.919 12.209 0.48E-03 0.23E-03 0.28E-06 1 7 9.919 4.655 0.17E-03 0.75E-03 0.30E-06 PAW_PBE Si 05Jan2001 : energy of atom 1 EATOM= -103.0669 kinetic energy error for atom= 0.0012 (will be added to EATOM!!) PAW_PBE N 08Apr2002 : energy of atom 2 EATOM= -264.5486 kinetic energy error for atom= 0.0736 (will be added to EATOM!!) PAW_PBE Cl 06Sep2000 : energy of atom 3 EATOM= -409.7259 kinetic energy error for atom= 0.0089 (will be added to EATOM!!) PAW_PBE H 15Jun2001 : energy of atom 4 EATOM= -12.4884 kinetic energy error for atom= 0.0098 (will be added to EATOM!!) POSCAR: No title positions in direct lattice No initial velocities read in exchange correlation table for LEXCH = 8 RHO(1)= 0.500 N(1) = 2000 RHO(2)= 100.500 N(2) = 4000 -------------------------------------------------------------------------------------------------------- ion position nearest neighbor table 1 0.395 0.660 0.469- 2 1.79 3 2.02 5 2.04 4 2.06 2 0.486 0.512 0.511- 8 0.93 6 1.12 1 1.79 3 0.219 0.629 0.563- 1 2.02 4 0.476 0.838 0.533- 1 2.06 5 0.372 0.677 0.267- 1 2.04 6 0.593 0.525 0.481- 2 1.12 7 0.457 0.322 0.437- 8 0.466 0.439 0.565- 2 0.93 LATTYP: Found a simple cubic cell. ALAT = 10.0000000000 Lattice vectors: A1 = ( 10.0000000000, 0.0000000000, 0.0000000000) A2 = ( 0.0000000000, 10.0000000000, 0.0000000000) A3 = ( 0.0000000000, 0.0000000000, 10.0000000000) Analysis of symmetry for initial positions (statically): ===================================================================== Subroutine PRICEL returns: Original cell was already a primitive cell. Routine SETGRP: Setting up the symmetry group for a simple cubic supercell. Subroutine GETGRP returns: Found 1 space group operations (whereof 1 operations were pure point group operations) out of a pool of 48 trial point group operations. The static configuration has the point symmetry C_1 . Analysis of symmetry for dynamics (positions and initial velocities): ===================================================================== Subroutine PRICEL returns: Original cell was already a primitive cell. Routine SETGRP: Setting up the symmetry group for a simple cubic supercell. Subroutine GETGRP returns: Found 1 space group operations (whereof 1 operations were pure point group operations) out of a pool of 48 trial point group operations. The dynamic configuration has the point symmetry C_1 . Subroutine INISYM returns: Found 1 space group operations (whereof 1 operations are pure point group operations), and found 1 'primitive' translations ---------------------------------------------------------------------------------------- Primitive cell volume of cell : 1000.0000 direct lattice vectors reciprocal lattice vectors 10.000000000 0.000000000 0.000000000 0.100000000 0.000000000 0.000000000 0.000000000 10.000000000 0.000000000 0.000000000 0.100000000 0.000000000 0.000000000 0.000000000 10.000000000 0.000000000 0.000000000 0.100000000 length of vectors 10.000000000 10.000000000 10.000000000 0.100000000 0.100000000 0.100000000 position of ions in fractional coordinates (direct lattice) 0.395349230 0.660259780 0.469267650 0.485689880 0.511730620 0.510914750 0.218605160 0.628958130 0.562706610 0.475718040 0.838398350 0.532970400 0.372251880 0.676982900 0.267254910 0.592880170 0.525225410 0.480701220 0.457239440 0.322077250 0.436619520 0.466302700 0.438911450 0.565275230 ion indices of the primitive-cell ions primitive index ion index 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 ---------------------------------------------------------------------------------------- KPOINTS: Automatic mesh Automatic generation of k-mesh. Grid dimensions read from file: generate k-points for: 2 2 2 Generating k-lattice: Cartesian coordinates Fractional coordinates (reciprocal lattice) 0.050000000 0.000000000 0.000000000 0.500000000 0.000000000 0.000000000 0.000000000 0.050000000 0.000000000 0.000000000 0.500000000 0.000000000 0.000000000 0.000000000 0.050000000 0.000000000 0.000000000 0.500000000 Length of vectors 0.050000000 0.050000000 0.050000000 Shift w.r.t. Gamma in fractional coordinates (k-lattice) 0.000000000 0.000000000 0.000000000 Subroutine IBZKPT returns following result: =========================================== Found 8 irreducible k-points: Following reciprocal coordinates: Coordinates Weight 0.000000 0.000000 0.000000 1.000000 0.500000 0.000000 0.000000 1.000000 0.000000 0.500000 0.000000 1.000000 0.000000 0.000000 0.500000 1.000000 0.500000 0.500000 0.000000 1.000000 0.000000 0.500000 0.500000 1.000000 0.500000 0.000000 0.500000 1.000000 0.500000 0.500000 0.500000 1.000000 Following cartesian coordinates: Coordinates Weight 0.000000 0.000000 0.000000 1.000000 0.050000 0.000000 0.000000 1.000000 0.000000 0.050000 0.000000 1.000000 0.000000 0.000000 0.050000 1.000000 0.050000 0.050000 0.000000 1.000000 0.000000 0.050000 0.050000 1.000000 0.050000 0.000000 0.050000 1.000000 0.050000 0.050000 0.050000 1.000000 -------------------------------------------------------------------------------------------------------- Dimension of arrays: k-points NKPTS = 8 k-points in BZ NKDIM = 8 number of bands NBANDS= 21 number of dos NEDOS = 301 number of ions NIONS = 8 non local maximal LDIM = 4 non local SUM 2l+1 LMDIM = 8 total plane-waves NPLWV = 125000 max r-space proj IRMAX = 2395 max aug-charges IRDMAX= 4378 dimension x,y,z NGX = 50 NGY = 50 NGZ = 50 dimension x,y,z NGXF= 100 NGYF= 100 NGZF= 100 support grid NGXF= 100 NGYF= 100 NGZF= 100 ions per type = 1 1 3 3 NGX,Y,Z is equivalent to a cutoff of 8.31, 8.31, 8.31 a.u. NGXF,Y,Z is equivalent to a cutoff of 16.62, 16.62, 16.62 a.u. SYSTEM = No title POSCAR = No title Startparameter for this run: NWRITE = 1 write-flag & timer PREC = normal normal or accurate (medium, high low for compatibility) ISTART = 0 job : 0-new 1-cont 2-samecut ICHARG = 2 charge: 1-file 2-atom 10-const ISPIN = 1 spin polarized calculation? LNONCOLLINEAR = F non collinear calculations LSORBIT = F spin-orbit coupling INIWAV = 1 electr: 0-lowe 1-rand 2-diag LASPH = F aspherical Exc in radial PAW Electronic Relaxation 1 ENCUT = 400.0 eV 29.40 Ry 5.42 a.u. 16.31 16.31 16.31*2*pi/ulx,y,z ENINI = 400.0 initial cutoff ENAUG = 627.1 eV augmentation charge cutoff NELM = 200; NELMIN= 2; NELMDL= -5 # of ELM steps EDIFF = 0.1E-04 stopping-criterion for ELM LREAL = T real-space projection NLSPLINE = F spline interpolate recip. space projectors LCOMPAT= F compatible to vasp.4.4 GGA_COMPAT = T GGA compatible to vasp.4.4-vasp.4.6 LMAXPAW = -100 max onsite density LMAXMIX = 2 max onsite mixed and CHGCAR VOSKOWN= 1 Vosko Wilk Nusair interpolation ROPT = -0.00050 -0.00050 -0.00050 -0.00050 Ionic relaxation EDIFFG = -.2E-01 stopping-criterion for IOM NSW = 0 number of steps for IOM NBLOCK = 1; KBLOCK = 1 inner block; outer block IBRION = -1 ionic relax: 0-MD 1-quasi-New 2-CG NFREE = 0 steps in history (QN), initial steepest desc. (CG) ISIF = 2 stress and relaxation IWAVPR = 10 prediction: 0-non 1-charg 2-wave 3-comb ISYM = 2 0-nonsym 1-usesym 2-fastsym LCORR = T Harris-Foulkes like correction to forces POTIM = 0.5000 time-step for ionic-motion TEIN = 0.0 initial temperature TEBEG = 0.0; TEEND = 0.0 temperature during run SMASS = -3.00 Nose mass-parameter (am) estimated Nose-frequenzy (Omega) = 0.10E-29 period in steps = 0.13E+47 mass= -0.229E-26a.u. SCALEE = 1.0000 scale energy and forces NPACO = 256; APACO = 16.0 distance and # of slots for P.C. PSTRESS= 0.0 pullay stress Mass of Ions in am POMASS = 28.09 14.00 35.45 1.00 Ionic Valenz ZVAL = 4.00 5.00 7.00 1.00 Atomic Wigner-Seitz radii RWIGS = 1.11 0.75 0.99 0.32 virtual crystal weights VCA = 1.00 1.00 1.00 1.00 NELECT = 33.0000 total number of electrons NUPDOWN= -1.0000 fix difference up-down DOS related values: EMIN = 10.00; EMAX =-10.00 energy-range for DOS EFERMI = 0.00 ISMEAR = 1; SIGMA = 0.20 broadening in eV -4-tet -1-fermi 0-gaus Electronic relaxation 2 (details) IALGO = 38 algorithm LDIAG = T sub-space diagonalisation (order eigenvalues) LSUBROT= F optimize rotation matrix (better conditioning) TURBO = 0 0=normal 1=particle mesh IRESTART = 0 0=no restart 2=restart with 2 vectors NREBOOT = 0 no. of reboots NMIN = 0 reboot dimension EREF = 0.00 reference energy to select bands IMIX = 4 mixing-type and parameters AMIX = 0.40; BMIX = 1.00 AMIX_MAG = 1.60; BMIX_MAG = 1.00 AMIN = 0.10 WC = 100.; INIMIX= 1; MIXPRE= 1; MAXMIX= -45 Intra band minimization: WEIMIN = 0.0000 energy-eigenvalue tresh-hold EBREAK = 0.12E-06 absolut break condition DEPER = 0.30 relativ break condition TIME = 0.40 timestep for ELM volume/ion in A,a.u. = 125.00 843.54 Fermi-wavevector in a.u.,A,eV,Ry = 0.525105 0.992305 3.751606 0.275735 Thomas-Fermi vector in A = 1.545172 Write flags LWAVE = F write WAVECAR LDOWNSAMPLE = F k-point downsampling of WAVECAR LCHARG = F write CHGCAR LVTOT = F write LOCPOT, total local potential LVHAR = F write LOCPOT, Hartree potential only LELF = F write electronic localiz. function (ELF) LORBIT = 0 0 simple, 1 ext, 2 COOP (PROOUT), +10 PAW based schemes Dipole corrections LMONO = F monopole corrections only (constant potential shift) LDIPOL = F correct potential (dipole corrections) IDIPOL = 0 1-x, 2-y, 3-z, 4-all directions EPSILON= 1.0000000 bulk dielectric constant Exchange correlation treatment: GGA = -- GGA type LEXCH = 8 internal setting for exchange type VOSKOWN= 1 Vosko Wilk Nusair interpolation LHFCALC = F Hartree Fock is set to LHFONE = F Hartree Fock one center treatment AEXX = 0.0000 exact exchange contribution Linear response parameters LEPSILON= F determine dielectric tensor LRPA = F only Hartree local field effects (RPA) LNABLA = F use nabla operator in PAW spheres LVEL = F velocity operator in full k-point grid LINTERFAST= F fast interpolation KINTER = 0 interpolate to denser k-point grid CSHIFT =0.1000 complex shift for real part using Kramers Kronig OMEGAMAX= -1.0 maximum frequency DEG_THRESHOLD= 0.2000000E-02 threshold for treating states as degnerate RTIME = -0.100 relaxation time in fs (WPLASMAI= 0.000 imaginary part of plasma frequency in eV, 0.658/RTIME) DFIELD = 0.0000000 0.0000000 0.0000000 field for delta impulse in time Orbital magnetization related: ORBITALMAG= F switch on orbital magnetization LCHIMAG = F perturbation theory with respect to B field DQ = 0.001000 dq finite difference perturbation B field LLRAUG = F two centre corrections for induced B field -------------------------------------------------------------------------------------------------------- Static calculation charge density and potential will be updated during run non-spin polarized calculation Variant of blocked Davidson Davidson routine will perform the subspace rotation perform sub-space diagonalisation after iterative eigenvector-optimisation modified Broyden-mixing scheme, WC = 100.0 initial mixing is a Kerker type mixing with AMIX = 0.4000 and BMIX = 1.0000 Hartree-type preconditioning will be used using additional bands 4 real space projection scheme for non local part use partial core corrections calculate Harris-corrections to forces (improved forces if not selfconsistent) use gradient corrections use of overlap-Matrix (Vanderbilt PP) Methfessel and Paxton Order N= 1 SIGMA = 0.20 -------------------------------------------------------------------------------------------------------- energy-cutoff : 400.00 volume of cell : 1000.00 direct lattice vectors reciprocal lattice vectors 10.000000000 0.000000000 0.000000000 0.100000000 0.000000000 0.000000000 0.000000000 10.000000000 0.000000000 0.000000000 0.100000000 0.000000000 0.000000000 0.000000000 10.000000000 0.000000000 0.000000000 0.100000000 length of vectors 10.000000000 10.000000000 10.000000000 0.100000000 0.100000000 0.100000000 k-points in units of 2pi/SCALE and weight: Automatic mesh 0.00000000 0.00000000 0.00000000 0.125 0.05000000 0.00000000 0.00000000 0.125 0.00000000 0.05000000 0.00000000 0.125 0.00000000 0.00000000 0.05000000 0.125 0.05000000 0.05000000 0.00000000 0.125 0.00000000 0.05000000 0.05000000 0.125 0.05000000 0.00000000 0.05000000 0.125 0.05000000 0.05000000 0.05000000 0.125 k-points in reciprocal lattice and weights: Automatic mesh 0.00000000 0.00000000 0.00000000 0.125 0.50000000 0.00000000 0.00000000 0.125 0.00000000 0.50000000 0.00000000 0.125 0.00000000 0.00000000 0.50000000 0.125 0.50000000 0.50000000 0.00000000 0.125 0.00000000 0.50000000 0.50000000 0.125 0.50000000 0.00000000 0.50000000 0.125 0.50000000 0.50000000 0.50000000 0.125 position of ions in fractional coordinates (direct lattice) 0.39534923 0.66025978 0.46926765 0.48568988 0.51173062 0.51091475 0.21860516 0.62895813 0.56270661 0.47571804 0.83839835 0.53297040 0.37225188 0.67698290 0.26725491 0.59288017 0.52522541 0.48070122 0.45723944 0.32207725 0.43661952 0.46630270 0.43891145 0.56527523 position of ions in cartesian coordinates (Angst): 3.95349230 6.60259780 4.69267650 4.85689880 5.11730620 5.10914750 2.18605160 6.28958130 5.62706610 4.75718040 8.38398350 5.32970400 3.72251880 6.76982900 2.67254910 5.92880170 5.25225410 4.80701220 4.57239440 3.22077250 4.36619520 4.66302700 4.38911450 5.65275230 -------------------------------------------------------------------------------------------------------- k-point 1 : 0.0000 0.0000 0.0000 plane waves: 18037 k-point 2 : 0.5000 0.0000 0.0000 plane waves: 18184 k-point 3 : 0.0000 0.5000 0.0000 plane waves: 18184 k-point 4 : 0.0000 0.0000 0.5000 plane waves: 18184 k-point 5 : 0.5000 0.5000 0.0000 plane waves: 18176 k-point 6 : 0.0000 0.5000 0.5000 plane waves: 18176 k-point 7 : 0.5000 0.0000 0.5000 plane waves: 18176 k-point 8 : 0.5000 0.5000 0.5000 plane waves: 18048 maximum and minimum number of plane-waves per node : 18184 18037 maximum number of plane-waves: 18184 maximum index in each direction: IXMAX= 16 IYMAX= 16 IZMAX= 16 IXMIN= -16 IYMIN= -16 IZMIN= -16 The following grids will avoid any aliasing or wrap around errors in the Hartre e energy - symmetry arguments have not been applied - exchange correlation energies might require even more grid points - we recommend to set PREC=Normal or Accurate and rely on VASP defaults WARNING: aliasing errors must be expected set NGX to 70 to avoid them WARNING: aliasing errors must be expected set NGY to 70 to avoid them WARNING: aliasing errors must be expected set NGZ to 70 to avoid them serial 3D FFT for wavefunctions parallel 3D FFT for charge: minimum data exchange during FFTs selected (reduces bandwidth) total amount of memory used by VASP MPI-rank0 89239. kBytes ======================================================================= base : 30000. kBytes nonlr-proj: 883. kBytes fftplans : 12087. kBytes grid : 29900. kBytes one-center: 24. kBytes wavefun : 16345. kBytes Broyden mixing: mesh for mixing (old mesh) NGX = 33 NGY = 33 NGZ = 33 (NGX =100 NGY =100 NGZ =100) gives a total of 35937 points initial charge density was supplied: charge density of overlapping atoms calculated number of electron 33.0000000 magnetization keeping initial charge density in first step -------------------------------------------------------------------------------------------------------- Maximum index for non-local projection operator 2296 Maximum index for augmentation-charges 1364 (set IRDMAX) -------------------------------------------------------------------------------------------------------- First call to EWALD: gamma= 0.177 Maximum number of real-space cells 3x 3x 3 Maximum number of reciprocal cells 3x 3x 3 ----------------------------------------- Iteration 1( 1) --------------------------------------- eigenvalue-minimisations : 399 total energy-change (2. order) : 0.2495411E+03 (-0.8510373E+03) number of electron 33.0000000 magnetization augmentation part 33.0000000 magnetization Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 4.21699417 Ewald energy TEWEN = 279.41675060 -Hartree energ DENC = -1610.98014630 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 77.21357061 PAW double counting = 1275.28528549 -1259.25082463 entropy T*S EENTRO = -0.01393749 eigenvalues EBANDS = -150.47414044 atomic energy EATOM = 1634.12754338 Solvation Ediel_sol = 0.00000000 --------------------------------------------------- free energy TOTEN = 249.54109539 eV energy without entropy = 249.55503288 energy(sigma->0) = 249.54574122 -------------------------------------------------------------------------------------------------------- ----------------------------------------- Iteration 1( 2) --------------------------------------- eigenvalue-minimisations : 525 total energy-change (2. order) :-0.2192487E+03 (-0.2165646E+03) number of electron 33.0000000 magnetization augmentation part 33.0000000 magnetization Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 4.21699417 Ewald energy TEWEN = 279.41675060 -Hartree energ DENC = -1610.98014630 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 77.21357061 PAW double counting = 1275.28528549 -1259.25082463 entropy T*S EENTRO = -0.00778132 eigenvalues EBANDS = -369.72901566 atomic energy EATOM = 1634.12754338 Solvation Ediel_sol = 0.00000000 --------------------------------------------------- free energy TOTEN = 30.29237634 eV energy without entropy = 30.30015766 energy(sigma->0) = 30.29497012 -------------------------------------------------------------------------------------------------------- ----------------------------------------- Iteration 1( 3) --------------------------------------- eigenvalue-minimisations : 393 total energy-change (2. order) :-0.6197622E+02 (-0.6176239E+02) number of electron 33.0000000 magnetization augmentation part 33.0000000 magnetization Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 4.21699417 Ewald energy TEWEN = 279.41675060 -Hartree energ DENC = -1610.98014630 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 77.21357061 PAW double counting = 1275.28528549 -1259.25082463 entropy T*S EENTRO = -0.05223869 eigenvalues EBANDS = -431.66078196 atomic energy EATOM = 1634.12754338 Solvation Ediel_sol = 0.00000000 --------------------------------------------------- free energy TOTEN = -31.68384733 eV energy without entropy = -31.63160864 energy(sigma->0) = -31.66643443 -------------------------------------------------------------------------------------------------------- ----------------------------------------- Iteration 1( 4) --------------------------------------- eigenvalue-minimisations : 528 total energy-change (2. order) :-0.3007836E+01 (-0.2997731E+01) number of electron 33.0000000 magnetization augmentation part 33.0000000 magnetization Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 4.21699417 Ewald energy TEWEN = 279.41675060 -Hartree energ DENC = -1610.98014630 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 77.21357061 PAW double counting = 1275.28528549 -1259.25082463 entropy T*S EENTRO = -0.05614220 eigenvalues EBANDS = -434.66471478 atomic energy EATOM = 1634.12754338 Solvation Ediel_sol = 0.00000000 --------------------------------------------------- free energy TOTEN = -34.69168366 eV energy without entropy = -34.63554146 energy(sigma->0) = -34.67296959 -------------------------------------------------------------------------------------------------------- ----------------------------------------- Iteration 1( 5) --------------------------------------- eigenvalue-minimisations : 483 total energy-change (2. order) :-0.3380574E-01 (-0.3372957E-01) number of electron 32.9999997 magnetization augmentation part -2.6741138 magnetization Broyden mixing: rms(total) = 0.14738E+01 rms(broyden)= 0.14733E+01 rms(prec ) = 0.17317E+01 weight for this iteration 100.00 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 4.21699417 Ewald energy TEWEN = 279.41675060 -Hartree energ DENC = -1610.98014630 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 77.21357061 PAW double counting = 1275.28528549 -1259.25082463 entropy T*S EENTRO = -0.05614875 eigenvalues EBANDS = -434.69851398 atomic energy EATOM = 1634.12754338 Solvation Ediel_sol = 0.00000000 --------------------------------------------------- free energy TOTEN = -34.72548940 eV energy without entropy = -34.66934065 energy(sigma->0) = -34.70677315 -------------------------------------------------------------------------------------------------------- ----------------------------------------- Iteration 1( 6) --------------------------------------- eigenvalue-minimisations : 447 total energy-change (2. order) : 0.2749187E+01 (-0.1115895E+01) number of electron 32.9999995 magnetization augmentation part -2.7623871 magnetization Broyden mixing: rms(total) = 0.82833E+00 rms(broyden)= 0.82823E+00 rms(prec ) = 0.87175E+00 weight for this iteration 100.00 eigenvalues of (default mixing * dielectric matrix) average eigenvalue GAMMA= 1.2479 1.2479 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 4.21699417 Ewald energy TEWEN = 279.41675060 -Hartree energ DENC = -1641.36109304 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 79.03453810 PAW double counting = 1790.25704982 -1774.73736755 entropy T*S EENTRO = -0.05547128 eigenvalues EBANDS = -402.87524644 atomic energy EATOM = 1634.12754338 Solvation Ediel_sol = 0.00000000 --------------------------------------------------- free energy TOTEN = -31.97630223 eV energy without entropy = -31.92083095 energy(sigma->0) = -31.95781180 -------------------------------------------------------------------------------------------------------- ----------------------------------------- Iteration 1( 7) --------------------------------------- eigenvalue-minimisations : 519 total energy-change (2. order) : 0.8112326E-01 (-0.1139695E+00) number of electron 32.9999995 magnetization augmentation part -2.7633424 magnetization Broyden mixing: rms(total) = 0.47251E+00 rms(broyden)= 0.47248E+00 rms(prec ) = 0.49465E+00 weight for this iteration 100.00 eigenvalues of (default mixing * dielectric matrix) average eigenvalue GAMMA= 1.5341 0.9623 2.1059 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 4.21699417 Ewald energy TEWEN = 279.41675060 -Hartree energ DENC = -1647.08470626 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 79.55705037 PAW double counting = 2279.16574273 -2263.83121694 entropy T*S EENTRO = -0.05524695 eigenvalues EBANDS = -397.40809009 atomic energy EATOM = 1634.12754338 Solvation Ediel_sol = 0.00000000 --------------------------------------------------- free energy TOTEN = -31.89517897 eV energy without entropy = -31.83993202 energy(sigma->0) = -31.87676332 -------------------------------------------------------------------------------------------------------- ----------------------------------------- Iteration 1( 8) --------------------------------------- eigenvalue-minimisations : 426 total energy-change (2. order) : 0.4374002E-01 (-0.1830464E-01) number of electron 32.9999996 magnetization augmentation part -2.7510716 magnetization Broyden mixing: rms(total) = 0.11548E+00 rms(broyden)= 0.11547E+00 rms(prec ) = 0.13146E+00 weight for this iteration 100.00 eigenvalues of (default mixing * dielectric matrix) average eigenvalue GAMMA= 1.4989 2.4638 1.0164 1.0164 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 4.21699417 Ewald energy TEWEN = 279.41675060 -Hartree energ DENC = -1653.02105643 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 80.04486272 PAW double counting = 2730.01039802 -2714.83771405 entropy T*S EENTRO = -0.05510552 eigenvalues EBANDS = -391.75411184 atomic energy EATOM = 1634.12754338 Solvation Ediel_sol = 0.00000000 --------------------------------------------------- free energy TOTEN = -31.85143896 eV energy without entropy = -31.79633343 energy(sigma->0) = -31.83307045 -------------------------------------------------------------------------------------------------------- ----------------------------------------- Iteration 1( 9) --------------------------------------- eigenvalue-minimisations : 528 total energy-change (2. order) : 0.5669279E-02 (-0.4532427E-02) number of electron 32.9999996 magnetization augmentation part -2.7582783 magnetization Broyden mixing: rms(total) = 0.47446E-01 rms(broyden)= 0.47437E-01 rms(prec ) = 0.57512E-01 weight for this iteration 100.00 eigenvalues of (default mixing * dielectric matrix) average eigenvalue GAMMA= 1.5066 2.5505 1.6052 0.9354 0.9354 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 4.21699417 Ewald energy TEWEN = 279.41675060 -Hartree energ DENC = -1655.65028784 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 80.20367322 PAW double counting = 2817.97561242 -2802.82939545 entropy T*S EENTRO = -0.05502163 eigenvalues EBANDS = -389.25163856 atomic energy EATOM = 1634.12754338 Solvation Ediel_sol = 0.00000000 --------------------------------------------------- free energy TOTEN = -31.84576968 eV energy without entropy = -31.79074805 energy(sigma->0) = -31.82742913 -------------------------------------------------------------------------------------------------------- ----------------------------------------- Iteration 1( 10) ---------------------------------------