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Electronic Transport

In the present section, we turn to the calculation of several transport coefficients, namely, the electrical
conductivity 𝜎, the thermopower or Seebeck coefficient 𝑆, and the thermal conductivity 𝜅. These quantities
enter the relations between the electric field 𝐸, the temperature gradient ∇𝑇 , and the corresponding electrical
and heat currents 𝐽𝑒 and 𝐽𝑄, respectively, which read as [1], [2]

𝐽𝑒 = 𝜎𝐸 − 𝜎𝑆∇𝑇 (1)

𝐽𝑄 = 𝑇𝜎𝑆𝐸 − 𝜅0∇𝑇 (2)

Note that in general the transport coefficients 𝜎, 𝑆, and 𝜅0 are tensors connecting the vectors 𝐸, ∇𝑇 , 𝐽𝑒, and
𝐽𝑄, which may not be collinear. We will for the time being suppress any particular notation for these tensors
for simplicity in writing but will be more specific in the final formulas for these quantities. Note that products of
these tensors are calculated along the standard rules for the calculation of matrix products. A more detailed
account of the present discussion can be found in Ref. [1].

In addition to 𝜅0, which is the thermal conductivity at zero electric field, we define the quantity 𝜅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐,
which is the thermal conductivity at zero electrical current and which is the quantity usually measured. Ac-
cording to (1) and (2) both thermal conductivities are related via

𝜅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 = 𝜅0 − 𝑇𝜎𝑆2 (3)

where the product 𝜎𝑆2 is the power factor. Finally, we arrive at the total thermal conductivity by adding
𝜅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 and the lattice contribution 𝜅𝑙𝑎𝑡𝑡𝑖𝑐𝑒.

In thermoelectrics, a combination of the above-mentioned transport coefficients gives rise to the so-called
figure of merit [3], [4]

𝑍 =
𝜎𝑆2

𝜅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 + 𝜅𝑙𝑎𝑡𝑡𝑖𝑐𝑒

(4)

In practice, evaluation of the above-mentioned transport coefficients can be achieved by applying Boltzmann
theory [5], [6], [7]. Within the framework of this theory the energy-dependent electrical conductivity tensor
can be expressed as [8]

𝜎𝛼𝛽(𝐸) =
𝑒2

Ω𝐶

∑︁
𝑘

∑︁
𝑛

(︂
−𝜕𝑓(𝐸)

𝜕𝐸

)︂
𝑣𝛼𝑘𝑛𝑣

𝛽
𝑘𝑛𝜏𝑘𝑛 (5)

where 𝑓(𝐸) is the Fermi function

𝑓(𝐸) =
1

𝑒𝛽(𝐸−𝜇) + 1
(6)

with 𝜇 being the chemical potential and 𝛽 =
1

𝑘𝐵𝑇
as usual. In (5), 𝜏𝑘𝑛 denotes the relaxation time, which

mimics the effects of, e.g., electron-phonon scattering on the electronic states and, in principle, depends on
the band index, spin, and k-point. The relaxation time will be addressed in more detail below. Furthermore,

[1] V. Eyert, The Augmented Spherical Wave Method, Lect. Notes Phys. 849 (Springer, Berlin Heidelberg 2013).
[2] G. Czycholl, Theoretische Festk𝑜 rperphysik, (Springer Berlin Heidelberg, 2008).
[3] G. D. Mahan and J. O. Sofo, The Best Thermoelectric, Proc. Nat. Acad. Sci. 93, 7436-7436 (1996).
[4] T. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. Badding, and J Sofo, Transport Coefficients From First-Principles Calcula-

tions, Phys. Rev. B 68, 125210 (2003).
[5] B. R. Nag, Electron Transport in Compound Semiconductors, (Springer, Berlin 1980).
[6] P. B. Allen, Boltzmann Theory and Resistivity of Metals, in: Quantum Theory of Real Materials, ed. by J. Chelikowsky and S. G.

Louie (Kluwer, 1996).
[7] J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Clarendon Press, Oxford 2001).
[8] G. K. H. Madsen and D. J. Singh, BoltzTraP. A Code for Calculating Band-Structure Dependent Quantities, Comp. Phys. Commun.

175, 67-71 (2006).

v. 3.8 Copyright © 2024 Materials Design, Inc., All rights reserved.
Materials Design® and MedeA® are registered trademarks of Materials Design, Inc.

12121 Scripps Summit Dr., Ste 160 San Diego, CA 92131

1 of 4



D
O

C
U

M
E

N
TA

TI
O

N
MedeA Documentation

𝑣𝛼𝑘𝑛 is the Cartesian component of the group velocity for each band and k-point, which is given by the first
derivative of the band energy with respect to the corresponding Cartesian component of the k-vector as

𝑣𝛼𝑘𝑛 =
1

~
𝜕𝜖𝑘𝑛
𝜕𝑘𝛼

(7)

Defining, in addition, the inverse effective mass tensor in terms of the second derivative of the band energies
with respect to the Cartesian components of the k-vector as(︂

1

𝑚*
𝑛

)︂
𝛼𝛽

=
1

~2
𝜕2𝜖𝑘𝑛
𝜕𝑘𝛼𝜕𝑘𝛽

(8)

and, using the Levi-Civita tensor, 𝜖𝛼𝛽𝛾 , we are furthermore able to write down the energy-dependent Hall
conductivity [8] [9]

𝜎𝐻,𝛼𝛽𝛾(𝐸) =
𝑒3

Ω𝑐

∑︁
𝑘

∑︁
𝑛

(︂
−𝜕𝑓(𝐸)

𝜕𝐸

)︂∑︁
𝜇𝜈

𝑣𝛼𝑘𝑛

(︂
1

𝑚*
𝑛(𝑘)

)︂
𝛽𝜇

𝑣𝜈𝑘𝑛𝜖𝜇𝜈𝛾𝜏
2
𝑘𝑛 (9)

which will enter the calculation of the Hall coefficient below.

In passing, we mention that the expressions for the group velocity and the inverse effective mass tensor may
still be rewritten using 𝑘 · 𝑝 perturbation theory in terms of the momentum operator [10].

The calculation of the electrical conductivity and the related transport properties can be much simplified by
defining the so-called transport distribution [3] [4]

Ξ𝛼𝛽(𝐸) =
1

Ω𝑐

∑︁
𝑘

∑︁
𝑛

𝑣𝛼𝑘𝑛𝑣
𝛽
𝑘𝑛𝜏𝑘𝑛𝛿(𝐸 − 𝜖𝑘𝑛) (10)

Note that the transport distribution is symmetric with respect to exchange of the Cartesian components. With
the help of the previous definition, we can write the transport coefficients as

𝜎𝛼𝛽 = 𝑒2
∫︁ ∞

−∞
𝑑𝐸

(︂
−𝜕𝑓(𝐸)

𝜕𝐸

)︂
Ξ𝛼𝛽(𝐸) (11)

Υ𝛼𝛽 = 𝑒2
∫︁ ∞

−∞
𝑑𝐸

(︂
−𝜕𝑓(𝐸)

𝜕𝐸

)︂
Ξ𝛼𝛽(𝐸)(𝐸 − 𝜇) (12)

𝜅0,𝛼𝛽 = 𝑒2
∫︁ ∞

−∞
𝑑𝐸

(︂
−𝜕𝑓(𝐸)

𝜕𝐸

)︂
Ξ𝛼𝛽(𝐸)(𝐸 − 𝜇)2 (13)

While the electrical conductivity is directly given by (11) and the electronic part of the thermal conductivity by
(13), the thermopower is obtained from the matrix equation

𝑆𝛼𝛽 =
∑︁
𝛾

(︀
𝜎−1

)︀
𝛼𝛾

Υ𝛾𝛽 (14)

The negative derivative of the Fermi function with respect to energy is

−𝜕𝑓(𝐸)

𝜕𝐸
= 𝛽

𝑒𝛽(𝐸−𝜇)(︀
𝑒𝛽(𝐸−𝜇) + 1

)︀2 (15)

In equations (11) to (13) the effective integration range around the Fermi level (chemical potential) is deter-
mined by the negative derivative of the Fermi function times (𝛽(𝐸 − 𝜇))

𝑛. These functions are plotted below
for 𝑛 = 0, 1, 2. Obviously, this restricts the energy integration to a narrow range around the Fermi energy.
However, at elevated temperatures this energy range may be large enough to smear out rather fine details of
the electronic structure.

[9] W. Schulz, P. B. Allen, and N. Trivedi, Hall Coefficient of Cubic Metals, Phys. Rev. B 45, 10886-10890 (1992).
[10] N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Holt-Saunders, Philadelphia 1976).
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In close analogy to the transport distribution, we define the so-called Hall distribution by

Θ𝐻,𝛼𝛽𝛾(𝐸) =
1

Ω𝑐

∑︁
𝑘

∑︁
𝑛

∑︁
𝜇𝜈

𝑣𝛼𝑘𝑛

(︂
1

𝑚*
𝑛(𝑘)

)︂
𝛽𝜇

𝑣𝜈𝑘𝑛𝜖𝜇𝜈𝛾𝜏
2
𝑘𝑛𝛿(𝐸 − 𝜖𝑘𝑛) (16)

from which the Hall conductivity is calculated as

𝜎𝐻,𝛼𝛽𝛾 = 𝑒3
∫︁ ∞

−∞
𝑑𝐸

(︂
−𝜕𝑓(𝐸)

𝜕𝐸

)︂
Θ𝐻,𝛼𝛽𝛾(𝐸) (17)

Finally, the Hall conductivity in combination with the electrical conductivity gives rise to the Hall coeffi-
cient [8] [9]

𝑅𝐻,𝛼𝛽𝛾 =
𝐸𝑖𝑛𝑑

𝛽

𝐽𝑎𝑝𝑝𝑙
𝑒,𝛼 𝐵𝑎𝑝𝑝𝑙

𝛾

=
∑︁
𝜇𝜈

(︀
𝜎−1

)︀
𝛼𝜇

𝜎𝐻,𝜇𝜈𝛾

(︀
𝜎−1

)︀
𝜈𝛽 (18)

Note that all the just calculated transport coefficients can be completely accessed from the electronic struc-
ture were it not for the relaxation time 𝜏𝑘𝑛. However, detailed studies have shown that the relaxation time, to
a good approximation, is isotropic [9]. For this reason, we follow the usual treatment and keep the relaxation
time constant, in which case it cancels completely from both the thermopower and the Hall coefficient.

The effective mass tensor mentioned above has received a lot of interest, especially in the semiconductor
industry. From a semiclassical point of view, it influences the response of the electrons to an external electric
or magnetic field and, hence, the carrier mobility. It thereby directly affects the transport properties of a
material, which have a strong impact on the properties of semiconductor devices. In general, the effective
mass of the charge carriers is a genuine fingerprint of the materials properties. While in semiconductors
effective masses usually are of the order of 1 electron mass but may well be one or even two orders of
magnitude smaller or larger, extremely high effective masses of the order of 1000 electron masses have
been observed in the heavy fermion systems, where the strong coupling of the conduction electrons to the
well localized f electrons leads to the strongly enhanced mass renormalization.

The definition and calculation of the effective mass from the electronic band structure is, of course, predicated
on the isotropic and parabolic dispersion relation of free electrons

𝜖𝑘 =
~2

2𝑚
𝑘2 (19)

with 𝑚 being the bare electron mass. Obviously, the latter is given as the second derivative or equivalently
the curvature of the band. These basic relations can be readily generalized to realistic band structures by
defining the effective mass tensor as given above as the second derivative of the 𝜖𝑘𝑛 with respect to the
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components of the k-vector.

Ashcroft and Mermin, while restricting their considerations to k-space regions near the band extrema, use
the same definition with a - and + sign appended for band maxima and minima, respectively [10].

This reflects the main interest from semiconductor physics, where partially filled bands, which are accessible
to charge carrier transport induced by external fields, develop only at non-zero temperature and by doping.
They thus affect only the electronic states near the valence band maximum and conduction band minimum.
Near to these band extrema, knowledge of the effective mass tensor gives access to an effective square-root
like density of states, which is renormalized by the ratio of the bare and effective masses and determines the
distribution of excited carriers at elevated temperatures and under doping.

While the effective mass tensor in principle can be determined, via the effective mass theorem growing out
of 𝑘 · 𝑝 perturbation theory, from the momentum operator, we prefer to determine the effective mass tensor
directly from the knowledge of the electronic states 𝜖𝑘𝑛 and a subsequent least-squares fit to these states.
Such a procedure is implemented in MedeA. To be specific, a least-squares fit routine of up to fourth-order
has been implemented, which allows you to obtain the effective mass tensor from the electronic states 𝜖𝑘𝑛
on a very fine grid of k-points centered about the point of interest. In practice, a grid spacing of 5 x 10-4 Å-1

is a good choice.
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